
K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 1246–1258, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Some Issues on the Implementation of Local Search in
Evolutionary Multiobjective Optimization

Hisao Ishibuchi and Kaname Narukawa

Department of Industrial Engineering, Osaka Prefecture University,
1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan

{hisaoi, kaname}@ie.osakafu-u.ac.jp

Abstract. This paper discusses the implementation of local search in
evolutionary multiobjective optimization (EMO) algorithms for the design of a
simple but powerful memetic EMO algorithm. First we propose a basic
framework of our memetic EMO algorithm, which is a hybrid algorithm of the
NSGA-II and local search. In the generation update procedure of our memetic
EMO algorithm, the next population is constructed from three populations: the
current population, its offspring population generated by genetic operations, and
an improved population obtained from the offspring population by local search.
We use Pareto ranking and the concept of crowding in the same manner as in
the NSGA-II for choosing good solutions to construct the next population from
these three populations. For implementing local search in our memetic EMO
algorithm, we examine two approaches, which have been often used in the
literature: One is based on Pareto ranking, and the other is based on a weighted
scalar fitness function. The main difficulty of the Pareto ranking approach is
that the movable area of the current solution by local search is very small. On
the other hand, the main difficulty of the weighted scalar approach is that the
offspring population can be degraded by local search. These difficulties are
clearly demonstrated through computational experiments on multiobjective
knapsack problems using our memetic EMO algorithm. Our experimental
results show that better results are obtained from the weighted scalar approach
than the Pareto ranking approach. For further improving the weighted scalar
approach, we examine some tricks that can be used for overcoming its
difficulty.

1 Introduction

Evolutionary multiobjective optimization (EMO) algorithms have been applied to
various problems for efficiently finding their Pareto-optimal or near Pareto-optimal
solutions. Recent EMO algorithms usually share some common ideas such as elitism,
fitness sharing and Pareto ranking for improving both the diversity of solutions and
the convergence to the Pareto front (e.g., see Coello et al. [1] and Deb [2]). In some
studies, local search was combined for further improving the search ability of EMO
algorithms [4]-[12].

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Some Issues on the Implementation of Local Search 1247

Hybridization of EMO algorithms with local search is often referred to as
MOGLS (multiobjective genetic local search) algorithms. Such a hybrid algorithm is
also called a memetic EMO algorithm. It is clearly shown by Jaszkiewicz [9] that
memetic EMO algorithms have higher search ability than pure EMO algorithms.
Memetic EMO algorithms can be roughly classified into two categories according to
their solution evaluation mechanisms in local search: One uses a weighted scalar
fitness function, and the other uses Pareto ranking. A memetic EMO algorithm based
on the weighted scalar fitness function with random weights was proposed by
Ishibuchi & Murata [6], improved by Jaszkiewicz [10] and Ishibuchi et al. [7], and
simplified by Ishibuchi & Kaige [5]. On the other hand, Knowles & Corne [11]
proposed a memetic EMO algorithm called M-PAES (memetic Pareto archived
evolution strategy) where each solution was evaluated based on Pareto ranking. Some
Pareto ranking-based acceptance rules of local search moves were examined in
Ishibuchi et al. [7] and Murata et al. [13]. The MOGLS of Jaszkiewicz [10] and the
M-PAES of Knowles & Corne [11], which are well-known memetic EMO algorithms
with high search ability, have been compared with each other in some comparative
studies [4], [8], [9], [12].

Our goal in this paper is to design a simple but powerful memetic EMO algorithm.
For achieving this goal, we discuss some issues related to the implementation of local
search in EMO algorithms through computational experiments on multiobjective
knapsack problems in Zitzler & Thiele [14]. Our computational experiments are
performed using a framework of a simple MOGLS algorithm, which is proposed in
this paper by combining the NSGA-II [3] with local search. In order to emphasize its
simplicity, we refer to our MOGLS algorithm as the simple MOGLS (i.e., S-MOGLS)
algorithm in this paper. As in the NSGA-II, we use Pareto ranking and the concept of
crowding for generation update in our S-MOGLS algorithm. One characteristic
feature of our generation update procedure is the use of three populations for
generating the next population: the current population, its offspring population
generated by genetic operations, and an improved population obtained from the
offspring population by local search. In the existing MOGLS algorithms [5]-[10], the
offspring population that had been improved by local search was not used in their
generation update procedures. In this sense, our S-MOGLS can be viewed as an
improved version of the S-MOGLS of Ishibuchi & Kaige [5].

Through computational experiments on multiobjective knapsack problems using
our S-MOGLS algorithm, we compare the above-mentioned two approaches to the
implementation of local search. We show that better results are obtained by the
weighted scalar approach than the Pareto ranking approach. We also demonstrate a
serious difficulty of the weighted scalar approach: Local search often degrades the
offspring population generated by genetic operations. For overcoming this difficulty,
we examine the effectiveness of the following tricks:

1248 H. Ishibuchi and K. Narukawa

(1) The use of the three populations in the generation update procedure in our S-
MOGLS algorithm. Generation update procedures with/without the offspring
population are compared with each other.

(2) The choice of good initial solutions for local search from the offspring population.
The tournament selection of initial solutions based on the weighted scalar fitness
function is examined using various specifications of the tournament size.

(3) The modification of the acceptance rule of local search moves. We examine a
modified acceptance rule in the weighted scalar approach.

This paper is organized as follows. In Section 2, we propose a basic framework of
our S-MOGLS algorithm. While we try to maximize the search ability of our S-
MOGLS algorithm, we also try to minimize its algorithmic complexity so that it can
be easily understood, easily implemented and efficiently executed using small
memory storage within short CPU time. In Section 3, we show various variants of our
S-MOGLS algorithm. In one variant, the weighted scalar fitness function is used in
the selection of parent solutions and the local search for their offspring. In another
variant, Pareto ranking instead of the weighted scalar fitness function is used for both
the parent selection and the local search. Of course, there exist many intermediate
variants between these two extremes. In Section 4, we show experimental results on
multiobjective knapsack problems using some variants of our S-MOGLS algorithm.
Finally Section 5 concludes this paper.

2 Basic Framework of Our S-MOGLS Algorithm

Let us consider the following k-objective maximization problem:

Maximize))(...,),(),(()(21 xxxxf kfff= , (1)
subject to Xx ∈ , (2)

where)(xf is the objective vector,)(xif is the i-th objective to be maximized, x is
the decision vector, and X is the feasible region in the decision space. When the
following two conditions are satisfied, a feasible solution Xx ∈ is said to be
dominated by another feasible solution Xy ∈ (i.e., y dominates x: y is better than x):

i∀ ,)()(yx ii ff ≤ and j∃ ,)()(yx jj ff < . (3)

If there is no feasible solution y that dominates x, x is said to be a Pareto-optimal
solution of the multiobjective optimization problem. The task of EMO algorithms is
to find Pareto-optimal or near Pareto-optimal solutions as many as possible.

The following weighted scalar fitness function was used in the MOGLS
algorithms of Ishibuchi et al. [5]-[7] and Jaszkiewicz [8]-[10]:

∑λ=
=

k

i
ii ff

1
)(),(xx λ , (4)

Some Issues on the Implementation of Local Search 1249

where

i∀ , 0≥λi and 1
1

=∑λ
=

k

i
i . (5)

In those MOGLS algorithms, the weight vector)...,,(1 kλλ=λ was randomly
specified whenever a pair of parent solutions was to be selected. The roulette wheel
selection was used in the original MOGLS algorithm [6]. In Ishibuchi et al. [7], better
results were obtained by the tournament selection than the roulette wheel selection.
On the other hand, a pair of parent solutions was randomly chosen from the best K
solutions in the current population with respect to the weighted scalar fitness function
in Jaszkiewicz [8]-[10]. The same weighted scalar fitness function with the current
weight vector, which had been used for choosing a pair of parent solutions, was also
used in local search for their offspring generated by genetic operations.

In our S-MOGLS algorithm, we use the weighted scalar fitness function in (4) for
choosing a pair of parent solutions from the current population. Since the tournament
selection needs less CPU time than the random selection from the best K solutions, we
use the tournament selection in our S-MOGLS algorithm (more specifically the binary
tournament slection). The selected parents are recombined to generate their offspring
to which a mutation operation is applied. The selection, recombination and mutation
are iterated to generate the offspring population (see Fig. 1). Local search is applied
only to good solutions in the offspring population. For choosing initial solutions for
local search from the offspring population, we use the tournament selection based on
the weighed scalar fitness function in (4). Whenever an initial solution is chosen, the
weight vector is randomly updated. Local search is probabilistically applied to the
selected initial solution. The idea of choosing good initial solutions was proposed in
Ishibuchi et al. [7]. Only when the initial solution is updated (i.e., improved) by local
search, the improved solution is added to the improved population in Fig. 1.

Genetic
operations

Local
search

Current Improved

Pareto
ranking

NextOffspring
population population population population

Fig. 1. Generation update mechanism in our S-MOGLS algorithm.

Recently it has been widely recognized in the EMO community that some form of
elitism is necessary for designing EMO and memetic EMO algorithms with high

1250 H. Ishibuchi and K. Narukawa

search ability (e.g., see Deb [2]). One straightforward implementation of elitism is to
store non-dominated solutions in the secondary population separately from the main
(i.e., current) population. For example, the secondary population was used in the
MOGLS algorithms of Ishibuchi et al. [6]-[7] and Jaszkiewicz [8]-[10], the M-PAES
[11] and the SPEA [14]. While the use of the secondary population significantly
improves the search ability of EMO and memetic EMO algorithms, it also increases
algorithmic complexity, memory storage and CPU time. Thus we do not use the
secondary population in our S-MOGLS algorithm. Instead of the secondary
population, we use the generation update scheme of the NSGA-II [3] for choosing
good solutions from the three populations in Fig. 1 (i.e., current, offspring and
improved populations). That is, each solution in the three populations is evaluated by
Pareto ranking and the concept of crowding in the same manner as in the NSGA-II
[3].

The outline of our S-MOGLS algorithm is written as follows:

Basic Framework of Our S-MOGLS Algorithm:
Step 1 (Initialization): Generate an initial population with popN solutions where

popN is the population size.
Step 2 (Genetic operations): Generate an offspring population by iterating the

following procedures popN times:
(1) Randomly specify the weight vector.
(2) Choose a pair of parent solutions from the current population using the

binary tournament selection based on the weighted scalar fitness function
with the current weight vector.

(3) Generate an offspring from the selected parents by crossover and mutation.
Step 3 (Local search): Generate an improved population by iterating the following

procedures popN times:
(1) Randomly specify the weight vector.
(2) Choose an initial solution for local search from the offspring population

using the binary tournament selection based on the weighted scalar fitness
function with the current weight vector.

(3) Apply a local search procedure based on the weighted scalar fitness
function with the current weight vector to the selected initial solution with
the local search application probability LSP . Only when the initial solution
is updated by the local search, the final solution at which the local search
is terminated is added to the improved population.

Step 4 (Generation update): Construct the next population from the current, offspring
and improved populations by choosing good solutions based on Pareto ranking
and the concept of crowding in the same manner as in the NSGA-II.

Step 5 (Termination test): If the pre-specified stopping condition is not satisfied,
return to Step 2. Otherwise terminate the execution of the algorithm.

Some Issues on the Implementation of Local Search 1251

3 Several Variants of Our S-MOGLS Algorithm

Various variants of our S-MOGLS algorithm can be implemented. In this section, we
briefly describe those variants of our S-MOGLS algorithm. Some of them are used in
computational experiments in the next section for discussing the implementation of
local search in memetic EMO algorithms.

Selection of Parent Solutions: In our S-MOGLS algorithm, we use the weighted
scalar fitness function for parent selection. This is to choose similar parents in the
objective space, from which good offspring are likely to be generated. Of course, we
can use other selection schemes. For example, we can use the parent selection scheme
of the NSGA-II [3] (i.e., Pareto ranking and the concept of crowding).

Selection of Initial Solutions for Local Search: In our S-MOGLS algorithm, we
choose good initial solutions from the offspring population for local search. It is also
possible to probabilistically apply local search to offspring solutions independent of
their performance. Moreover it is possible to apply local search to all offspring as in
some memetic EMO algorithms (e.g., the S-MOGLS algorithms in [6]-[10]).

Local Search: In our S-MOGLS algorithm, we use the weighted scalar fitness
function in local search as well as parent selection. We can also use Pareto ranking in
local search. When we use Pareto ranking, the current solution x is replaced with its
neighboring solution y (i.e., the local search move from x to y is accepted) only when
y dominates x (i.e., y is better than x: see (3)). That is, the local search move is
rejected when x and y are non-dominated with each other. In the M-PAES [11], a
more sophisticated acceptance rule was used for handling the situation where y and x
are incomparable with each other. The acceptance rule in [11] involves not only the
comparison between the current solution x and the candidate solution y, but also the
comparison with other solutions. This may somewhat degrade the inherent advantage
of local search: simplicity. Thus we do not use the local search procedure in [11].

Let us further discuss the weighted scalar approach and the Pareto ranking
approach to the implementation of local search. In Fig. 2, we show the movable area
of the current solution x by each approach in the case of a two-objective
maximization problem. In Fig. 2 (a), the weight vector was specified as

)5.0,5.0(),(21 == λλλ . As shown in Fig. 2, we can see that the movable area in the
Pareto ranking approach is much smaller than the weighted scalar approach. This
difference exponentially increases with the number of objectives because the movable
area in the Pareto ranking approach is k2/1 of the k-dimensional objective space
while it is always 1/2 in the case of the weighted scalar approach.

As shown by computational experiments in the next section (and other studies [7],
[13]), too small movable areas in the Pareto ranking approach prevent local search
from efficiently searching for good solutions. On the other hand, too large movable
areas in the weighted scalar approach sometimes lead to the deterioration of the
offspring population. Thus we examine a simple modification of the weighted scalar
approach for decreasing the movable areas as shown in Fig. 3 (a). More specifically,

1252 H. Ishibuchi and K. Narukawa

the local search move from the current solution x to the candidate solution y is
accepted when the inequality relation ard </ holds in Fig. 3 (b) where a is a user-
definable parameter. Of course, the candidate solution y should be better than the
current solution x with respect to the weighted scalar fitness function. It should be
noted that the weighted scalar approach corresponds to the case of ∞=a .

)(1 xf

x

0

)(2 xf

)5.0,5.0(=λ

Movable Area

)(2 xf

)(1 xf0

x

Movable Area

(a) Weighed scalar approach. (b) Pareto ranking approach.

Fig. 2. Movable area of the current solution x in the two-dimensional objective space.

x

)(2 xf

)(1 xf0

)5.0,5.0(=λ

Movable Area d

x

)(2 xf

)(1 xf0

r a
r

d <

d

x

)(2 xf

)(1 xf0

r a
r

d <

 (a) Movable area in the modified approach. (b) Definition of the acceptance rule.

Fig. 3. Modification of the weighted scalar approach.

4 Computational Experiments

In our computational experiments, we used nine knapsack problems in Zitzler &
Thiele [14]: 2-250, 2-500, 2-750, 3-250, 3-500, 3-750, 4-250, 4-500, 4-750 where “k-
m” means a k-objective m-item problem. Our computational experiments were
performed in the same manner as in other comparative studies (e.g., Ishibuchi &
Kaige [4], [5], Jaszkiewicz [9], and Knowles & Corne [12], and Zitzler & Thiele

Some Issues on the Implementation of Local Search 1253

[14]). We used the same parameter specifications as the NSGA-II in those
comparative studies for the EMO part of our S-MOGLS algorithm and as the M-
PAES and the MOGLS in those studies for the local search part.

For examining the performance of obtained non-dominated solution sets by our S-
MOGLS algorithm, we use the generational distance (GD) and the R1D measure (see
Coello [1] and Deb [2] for various performance measures). These measures evaluate
the quality of a non-dominated solution set using a reference solution set. The
reference solution set is a set of Pareto-optimal or near Pareto-optimal solutions. In
our computational experiments, the reference solution set for each test problem was
constructed by choosing non-dominated solutions among all solutions obtained in our
previous computational experiments. The GD measure is the average distance from
each solution in the obtained solution set to its nearest reference solution. This
measure evaluates the convergence to the Pareto front. On the other hand, the R1D
measure is the average distance from each reference solution to its nearest solution in
the obtained solution set. This measure evaluates both the convergence and the
diversity of obtained solutions. In our computational experiments, the average values
of these measures were calculated over 30 runs for each test problem.

Comparison between two approaches: We first compared the Pareto ranking
approach to the weighted scalar approach using the S-MOGLS algorithm in Section 2.
The local search application probability LSP was specified as =LSP 0.1. The relative
performance of the Pareto ranking approach with respect to the weighted scalar
approach was calculated for each test problem. Experimental results are summarized
in Fig. 4. In these figures, the horizontal axis shows the nine test problems. From Fig.
4, we can see that the relative performance of the Pareto ranking approach is larger
than 1.00 (which is the relative performance of the weighted scalar approach) for
many test problems. This means that the Pareto ranking approach is inferior to the
weighted scalar approach because the GD and R1D measures should be minimized.

0.20

1.00

1.80

2 3 4 2 3 4 2 3 4

GD

2 3 4 2 3 4 2 3 4
250-item 500-item 750-item

0.20

1.00

1.80

2 3 4 2 3 4 2 3 4

RD1

2 3 4 2 3 4 2 3 4
250-item 500-item 750-item

(a) The generational distance. (b) The RD1 measure.

Fig. 4. Relative performance of the Pareto ranking approach with respect to the weighted scalar
approach for each test problem.

1254 H. Ishibuchi and K. Narukawa

While better results were obtained from the weighted scalar approach, it has a
serious difficulty: The offspring population can be degraded by the local search. This
difficulty is illustrated in Fig. 5. In Fig. 5 (a), we show an offspring population and its
improved population. These populations are intermediate results during a
computational experiment using our S-MOGLS algorithm on the 2-500 problem.
Special parameter values were used in this computational experiment for illustration
purpose (e.g., a small population size and a large local search application probability).
Fig. 5 (b) shows why the offspring population can be degraded by the local search. As
shown in Fig. 5 (b), the offspring population is likely to be degraded when the local
search direction for each solution is not appropriate. Ideally the local search direction
should be vertical to the non-dominated front of the offspring population. In such an
ideal case, the offspring population will not be degraded (i.e., the local search moves
in Fig. 5 (b) won’t happen). In the remaining of this section, we examine some tricks
for overcoming the above-mentioned difficulty of the weighted scalar approach.

Total profit (knapsack 1)

T
ot

al
 p

ro
fi

t (
kn

ap
sa

ck
 2

)

Offspring population
 Improved population

17500 18000 18500 1900017500

18000

18500

19000

19500

 Total profit (knapsack 1)

T
ot

al
 p

ro
fi

t (
kn

ap
sa

ck
 2

)

Offspring population
 Improved population

17500 18000 18500 19000
17500

18000

18500

19000

19500

 (a) Offspring and improved populations. (b) Undesired local search moves.

Fig. 5. Illustration of the deterioration of the offspring population by the local search based on
the weighted scalar fitness function.

Use of three populations for generation update: A straightforward remedy for
the above-mentioned difficulty is to use the offspring population as well as the
improved population in the generation update procedure. For examining the
effectiveness of this generation update scheme, we examined the performance of a
variant of our S-MOGLS algorithm where offspring solutions were not used for
generating the next population when they were updated by local search. This variant
is exactly the same as the S-MOGLS algorithm of Ishibuchi & Kaige [5]. The relative
performance of this variant with respect to our S-MOGLS algorithm in Section 2 is
summarized in Fig. 6 in the same manner as Fig. 4. From this figure, we can see that
the performance of the S-MOGLS algorithm was degraded by modifying its
generation update scheme with respect to the GD measure.

Some Issues on the Implementation of Local Search 1255

Increase in the selection pressure of initial solutions: As we have already
discussed, the inappropriate specification of the local search direction causes the
deterioration of offspring populations by local search. Since we use the tournament
selection based on the weighted scalar fitness function for choosing initial solutions
for local search, the increase in the selection pressure of initial solutions (i.e., the
increase in the tournament size) may lead to the selection of an appropriate initial
solution for the current weight vector. That is, the tournament selection with a large
tournament size is likely to choose a very good offspring solution with respect to the
current weight vector. Such an offspring solution is likely to locate near the non-
dominated front of the offspring population. Moreover the current weight vector is
likely to be vertical to the non-dominated front around the selected initial solution.

0.80

1.00

1.20

2 3 4 2 3 4 2 3 4

GD

2 3 4 2 3 4 2 3 4
250-item 500-item 750-item

0.80

1.00

1.20

2 3 4 2 3 4 2 3 4

RD1

2 3 4 2 3 4 2 3 4
250-item 500-item 750-item

0.80

1.00

1.20

2 3 4 2 3 4 2 3 4

RD1

2 3 4 2 3 4 2 3 4
250-item 500-item 750-item

(a) The generational distance. (b) The RD1 measure.

Fig. 6. Relative performance of a variant of our S-MOGLS algorithm where intermediate
offspring solutions were not used for generating the next population.

0.60

1.00

1.40

1 2 5 1020 1 2 5 1020 1 2 5 1020

GD

01521 02
2-500 3-500 4-500

01521 02 01521 020.60

1.00

1.40

1 2 5 1020 1 2 5 1020 1 2 5 1020

GD

01521 02
2-500 3-500 4-500

01521 02 01521 02

0.60

1.00

1.40

1 2 5 1020 1 2 5 1020 1 2 5 1020

RD1

01521 02
2-500 3-500 4-500

01521 02 01521 020.60

1.00

1.40

1 2 5 1020 1 2 5 1020 1 2 5 1020

RD1

01521 02
2-500 3-500 4-500

01521 02 01521 02

(a) The generational distance. (b) The RD1 measure.

Fig. 7. Effect of the specification of the tournament size. Relative performance of each
specification was calculated with respect to the case of the binary tournament selection.

We examined various specifications of the tournament size for the selection of
initial solutions in our S-MOGLS algorithm. Experimental results are summarized in
Fig. 7 where horizontal axis shows the tournament size (i.e., 1, 2, 5, 10, 20). In this

1256 H. Ishibuchi and K. Narukawa

figure, the relative performance was calculated with respect to the binary tournament
selection. Thus the relative performance is always 1.00 in this figure when the
tournament size is 2. From this figure, we can see that the performance of our S-
MOGLS algorithm was improved by increasing the selection pressure of initial
solutions for local search. When the tournament size was specified as 1, initial
solutions were randomly chosen from the offspring population. In this case, the
performance of our S-MOGLS algorithm was degraded by the following two reasons:
One is the inappropriate specification of the local search direction for each initial
solution, and the other is the selection of poor offspring solutions as initial solutions.
On the other hand, good solutions together with appropriate local search directions are
chosen as initial solutions for local search when the selection pressure is high. As a
result, the performance of our S-MOGLS algorithm was improved by increasing the
tournament size in Fig. 7.

Modification of the acceptance rule: We also examined the effectiveness of the
modification of the acceptance rule illustrated in Fig. 3. We examined various
specifications of the user-definable parameter a using our S-MOGLS algorithm with
the binary tournament selection. The relative performance of each specification of a
was calculated with respect to the case of the weighted scalar approach (i.e., ∞=a).
Experimental results are summarized in Fig. 8 for =a 0.5, 1, 2, 5, ∞ . In Fig. 8, we
can see that the convergence to the Pareto front (i.e., the GD measure in Fig. 8 (a))
was improved by the modification of the acceptance rule from the case of ∞=a to

=α 0.5, 1, 2, 5. This modification, however, may have a negative effect on the
diversity of solutions because the R1D measure was not improved in Fig. 8 (b).

0.80

1.00

1.20

0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

GD

.5 1 52
2-500 3-500 4-500

.5 1 52 .5 1 52∞ ∞∞0.80

1.00

1.20

0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

GD

.5 1 52
2-500 3-500 4-500

.5 1 52 .5 1 52∞ ∞∞

0.80

1.00

1.20

0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

RD1

.5 1 52
2-500 3-500 4-500

.5 1 52 .5 1 52∞ ∞∞0.80

1.00

1.20

0.5 1 2 5 0.5 1 2 5 0.5 1 2 5

RD1

.5 1 52
2-500 3-500 4-500

.5 1 52 .5 1 52∞ ∞∞

(a) The generational distance (b) The RD1 measure

Fig. 8. Effect of the modification of the acceptance rule of the local search move. Relative
performance of each specification was calculated with respect to the case of the weighted scalar
approach (i.e., ∞=a).

5 Concluding Remarks

We proposed a new memetic EMO algorithm called S-MOGLS by combining local
search with the NSGA-II [3]. Our intention is to implement a simple but powerful

Some Issues on the Implementation of Local Search 1257

memetic EMO algorithm, which can be easily understood, easily implemented, and
efficiently executed using small memory storage within short CPU time. Using our S-
MOGLS algorithm, we examined several issues related to the implementation of local
search in memetic EMO algorithms. Through computational experiments, we showed
that the weighted scalar approach outperforms the Pareto ranking approach. We also
showed that the weighted scalar approach has a serious difficulty: The offspring
population can be degraded by local search. We implemented three remedies for this
difficulty in our S-MOGLS algorithm: the use of three populations (i.e., parent,
offspring and improved populations) in generation update, the choice of good initial
solutions for local search, and the modification of the acceptance rule. The
effectiveness of these tricks was demonstrated by our experimental results.

The authors would like to thank the financial support from Kayamori Foundation
of Information Science Advancement, and Japan Society for the Promotion of Science
(JSPS) through Grand-in-Aid for Scientific Research (B): KAKENHI (14380194).

References

1. Coello, C. A. C., Van Veldhuizen, D. A., and Lamont, G. B.: Evolutionary Algorithms for
Solving Multi-Objective Problems, Kluwer Academic Publishers, Boston (2002).

2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley &
Sons, Chichester (2001).

3. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II, IEEE Trans. on Evolutionary Computation 6 (2002) 182 –
197.

4. Ishibuchi, H., and Kaige, S.: Effects of Repair Procedures on the Performance of EMO
Algorithms for Multiobjective 0/1 Knapsack Problems, Proc. of 2003 Congress on
Evolutionary Computation (2003) 2254-2261.

5. Ishibuchi, H., and Kaige, S.: Implementation of Simple Multiobjective Memetic
Algorithms and Its Application to Knapsack Problems, International Journal of Hybrid
Intelligent System 1 (2004) 22-35.

6. Ishibuchi, H., and Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its
Application to Flowshop Scheduling, IEEE Trans. on Systems, Man, and Cybernetics -
Part C: Applications and Reviews 28 (1998) 392-403.

7. Ishibuchi, H., Yoshida, T., and Murata, T.: Balance between Genetic Search and Local
Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling,
IEEE Trans. on Evolutionary Computation 7 (2003) 204-223.

8. Jaszkiewicz, A.: Comparison of Local Search-Based Metaheuristics on the Multiple
Objective Knapsack Problem, Foundations of Computing and Decision Sciences 26
(2001) 99-120.

9. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the
0/1 Knapsack Problem - A Comparative Experiment, IEEE Trans. on Evolutionary
Computation 6 (2002) 402-412.

10. Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimization,
European Journal of Operational Research 137 (2002) 50-71.

11. Knowles, J. D., and Corne, D. W.: M-PAES: A Memetic Algorithm for Multiobjective
Optimization, Proc. of 2000 Congress on Evolutionary Computation (2000) 325-332.

1258 H. Ishibuchi and K. Narukawa

12. Knowles, J. D., and Corne, D. W.: A Comparison of Diverse Approaches to Memetic
Multiobjective Combinatorial Optimization, Proc. of 2000 Genetic and Evolutionary
Computation Conference Workshop Program: WOMA I (2000) 103-108.

13. Murata, T., Kaige, S., and Ishibuchi, H.: Generalization of Dominance Relation-Based
Replacement Rules for Memetic EMO Algorithms, Lecture Notes in Computer Sciences
2723 (2003) 1234-1245. Proc. of 2003 Genetic and Evolutionary Computation
Conference.

14. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach, IEEE Transactions on Evolutionary
Computation 3 (1999) 257-271.

	1 Introduction
	2 Basic Framework of Our S-MOGLS Algorithm
	3 Several Variants of Our S-MOGLS Algorithm
	4 Computational Experiments
	5 Concluding Remarks

